The Early Pioneer of Diffractive Optics

Beam Splitting

Beam Splitting elements are diffractive optical elements (DOE) used to split a single laser beam into several beams, each with the characteristics of the original beam.

Features:

HOLO

- Accurate angle separation
- Insensitive to X-Y-Z
- displacements
- Custom separation angle and shape
- Any input beam shape
- High power threshold
- Wavelengths from UV to IR
- Optional AR/AR coating

Applications:

- Parallel material processing
- Medical/aesthetic treatment
- Laser scribing (solar cells)
- Glass dicing (LCD displays)
- Laser display & illumination
- Machine vision & 3D sensors
- Fiber optics

DOEs can generate unique optical functions that are not possible by conventional reflective or refractive optical elements, providing greater flexibility in system configuration. Among the few advantages are: small footprint, fast/high throughput thanks to simultaneous processing, tailored energy distribution, etc. The operational principle is quite straightforward; from a collimated input beam, the output beams exit the DOE with a predesigned separation angle and intensity. Several examples are presented in Fig.1.

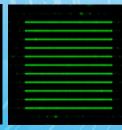
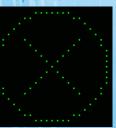
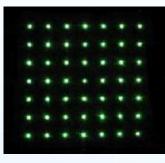
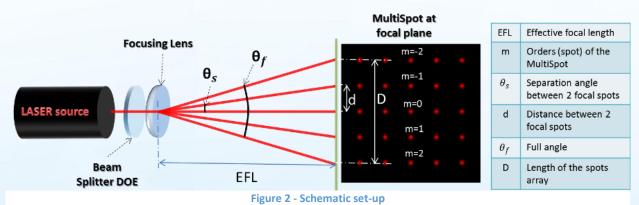




Figure 1 - Examples of Multi-spot DOEs. From left to right: Random, Round, Hexagonal, Viewfinder, Multiple lines




www.AINNOTECH.com Email: korea@ainnotech.com TEL:02,409,3222 FAX,02,409,3229 서울시 송파구 가려동 10-9 현성 B/D *도*

HOLOOR The Early Pioneer of Diffractive Optics

Design Considerations

1. In order to achieve well-focused spots at a certain distance, one needs to add a focusing lens after the DOE, as shown in figure 2 below.

2. In order to obtain the right lens, use the following mathematical relationship between the effective focal length (**EFL**), separation angle (θ_s), and interspot distance/ pitch (**d**):

$$d = EFL \times tan(\theta_s)$$

- In double-spot configuration, power efficiency can reach ~80%, and for multi-spot (>2) 85% is achivable, for a binary (2 level) etching process. In multi-level etching, efficiency can reach up to 95%. The remaining power is distributed among the other (parasitic) orders.
- 4. Energy distribution can be designed for either **spot uniformity** or for any non-uniform distribution meeting the application's requirements.
- 5. The **minimum input beam size** should generally be <u>at least</u> 3 times the size of the **period** in the DOE. The **period** is given by the grating equation:

$$\Lambda = \frac{m\lambda}{\sin\theta}$$

Where, Λ = period of DOE, **m** = diffraction order, λ = wavelength, **θ**= Separation angle between beams.

Specifications:

Materials:	Fused Silica, ZnSe, Plastics
Wavelength range:	193nm to 10.6um
Separation angle:	0.001° to 60° (larger angles require additional optics)
DOE design:	Binary, 8-level, 16-level, and more
Diffraction efficiency:	64%-98%
Element size:	2mm to 100mm
Coating (optional):	AR/AR V-Coating
Custom Design:	Almost any symmetry or arbitrary shape

www.AINNOTECH.com Email: korea@ainnotech.com TEL:02,409,3222 FAX,02,409,3229 서울시 송파구 가락동 10-9 현성 B/D 2F